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TABLE 11 
MEAN  SQUARE ERROR FOR MVZS, SYMMETRY, AND COMPOSITE 

SELECTION SCHEMES 

IbNZS - S Y ~ .  Selec t ion  
m.s.e 

Composite s e l ec t ion  

GATA Compression 
m.5.e m. s.e 

(No ex t re -  (wi9h extra- (No extra-  (with  extra- (No extra-  (wit:l extra- 
poia tor )   po la tor )   po la tor )  polator) p o l a t o r )  p o l s t o r )  

2-c C-auss 

8 b i t  uniform 4.64 -04873 . a 7 9  
IiarKov 

Quu; t iza t ion  8:64 .0391  -0371 
.a79 
* a02 

. a 7 0 2  
03888 

coefficients  to  be  used  in  such  structures  can  be  made  very 
readily  by  using  the  symmetry  properties  to  identify  the  coef- 
ficients  with  high  correlation. An expression  similar t o  (8) for 
the  covariance  when  the  data  belong  to  two  adjacent  blocks 
can  be  easily  derived.  Such  an  expression  has  been  used  to 
calculate  the  predictor  coefficient  values  in  hybrid  coding 
scheme [ 6 ] . 

I t  is seen  from  Table I that  for  the  one-dimensional  case 
an even (odd)  symmetry  term  has  correlation  with  an  even 
(odd)  symmetry  term  only.  Hence,  at  the  transmitter  one 
should  select  components  from  both  even  and  odd  symmetry 
terms  with  large  variances.  This will avoid the  possibility  that 
all the  weighting  factors in the  estimation  equation  (9)  for  a 
particular  component  are  zero. 

In  the  two-dimensional  case,  the  magnitudes of the  trans- 
form  domain  covariances  calculated  from (8) follow the  order:  

1)  covariance  of  EE, 
2) covariance  of  OE, 
3)  covariances  of 00. 

When  one  selects  the  transform  domain  components  using 
MVZS criterion,  one  runs  the risk of  selecting  a  large  number 
of  even-even  terms  (as  they  have  high  transform  domain  co- 
variances) to the  exclusion  of  the  odd-odd  terms.  The  extrap- 
olator  in  such  a  case  may  completely  fail to estimate  the 
odd-odd  terms. On the  other  hand, if one  selects  transform 
domain  components on the basis of  symmetry  criterion  only, 
i.e., selecting  equal  number  of  components  with  large  trans- 
form  domain  covariances  from  each  of  the  four  different  sym- 
metry  classes;  then  the  extrapolator  efficiency  also  suffers, as 
the  terms  with  large  variances  are  likely  to  be  ignored. 

A composite  selection  scheme,  where  due  consideration t o  
both  symmetry  and  transform  domain  variance  is  given,  ap- 
pears t o   be   t he  best  method  of  selection  in  transform  systems 
using  the  extrapolator.  In  this  scheme,  one  selects  at  least  one 
component  with  large  variance  from  each  possible  symmetry 
class. The  rest  of  the  components,are  to  be  selected  on  the 
basis of  magnitude  of  the  variances. 

Table I1 gives the  mean  square  error  for  different  compres- 
sion  ratios  with  and  without  extrapolator  in  case  of  Hadamard 
transform  of  size (8 X 8). The  data  considered  are  as  follows: 

1 )  two-dimensional  first-order  Gauss-Markov  sequence 
(mean  zero, px = p y  = 0.9) with 8 bit  uniform  quantization, 
and 

2 )  GIRL’S [ l ]  picture,  The  mean  square  yror  (MSE) is 
defined as MSE = C ( f -  f ) ’ / C f 2  where .f and f are  the origi- 
nal  and  estimated  data. 

DISCUSSION AND  CONCLUDING REMARKS 
The  results given in  Table I1 show  that  for  (4 : 64)  compres- 

sion,  the  use  of  symmetry  criterion gives lower MSE than 

MVZS  criterion  of  component  selection,  whereas  for (8 : 64) 
compression,  the  converse is true. 

This is because  for 4 :   64   and   6 :   64   compress ion ,  MVZS 
criterion  rejects 00 symmetry  components,  while  symmetry 
criterion  for 8 : 6 4  compression  selects 00 terms  with  low 
transform  domain  covariances  at  the  cost  of  EE  terms.  In 
both  the cases, the  extrapolator  efficiency  is  seen to suffer. 
The  composite  selection  scheme  based  on  both  MVZS  and 
symmetry  criterion  ensures  better  extrapolator  efficiency. 
The  improvement  of MSE may  be  slight,  but  there is a  large 
impact  on  the  subjective  quality  of  the  picture [7] ,  [8 1 .  
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Restoring Lost Samples  from an Oversampled 
Band-Limited  Signal 

ROBERT J. MARKS, I1 

Abstract-When  a  band-limited  signal is sampled at  its Nyquist rate, 
each  sample  is  independent.  When  sampled  in  excess of that rate,  the 
samples  become dependent. Thus,  if one or more samples  are lost, 
they can be recovered from the remaining  known  values. Using Gerch- 
berg’s iterative  algorithm  applied to interpolation, we  derive  a  closed 

Manuscript  received  November 25, 1981; revised  November 17, 1982. 
The  author is with the Department of Electrical  Engineering,  Univer- 

sity  of  Washington, Seattle, WA 98195. 

0096-3518/83/0600-0752$01.00 0 1983  IEEE 



IEEE  TRANSACTIONS  ON  ACOUSTICS,  SPEECH, AND  SIGNAL PROCESSING, VOL. ASSP-31,  NO. 3, JUNE 1983 153 

form expression by  which a finite number of data points can  be re- 
gained  from the remaining data in a uniformly oversampled  signal. A 
second restoration algorithm-based on an observation due to Howard- 
is  also presented. 

INTRODUCTION 
The  classical  Whittaker-Shannon  sampling  theorem [ 1 ] dic- 

tates  that a finite  energy  band-limited  signal  sampled  at  or 
above  its  Nyquist  rate  is  uniquely  determined  by  its  samples. 
When  sampled  at  the  Nyquist  rate,  each  signal  sample is  in- 
dependent of  every  other  sample.  The  sample  values  from  an 
oversampled  band-limited  signal, on  the  other  hand,  are  de- 
pendent.  Thus,  lost  samples  can  be  regained  from  knowledge 
of the  remaining  samples. In this  paper,  we  present  two  con- 
cise closed  form  algorithms  for  restoring  a  finite  number  of 
lost  samples  from  an  oversampled  band-limited  signal. 

I I  X 

I I 
1 

j I 01 1 j @I j 
! ! 

PRELIMINARIES 
An L2 signal f (x)  is  said to  be  band  limited  with  bandwidth 

2W if 

I- 2w I 

Fig. 1. Illustration of Gerchberg's iterative algorithm applied to  the 
restoration of lost sample values. where 

r m  

F ( u )  = f(x)  exp  (-j2nux)  dx. J- m 

Let  2B  be  a  sampling  rate  in  excess of the  Nyquist  rate 2W. 
Define  the  sampling  rate  parameter: 

Corollary: If  r < 1,  then 

W 
y-  < 1. 

B 
The  signal  can  then  be  interpolated  without  use of the  sample 
at  the  origin: 

Then  the  cardinal  series 
f(x) = f (2%) [sinc  (2Bx - m )  

m#O 

+ sinc ( rm)  sinc  (2Bx) 
r 

1 - r  1 converges  uniformly  where  sinc x = sin  (nx)/(nx).  Passing 
both sides  of  (2)  through  a  low-pass  filter  unity  on I uI < W 
and  zero  elsewhere gives 

+ --sinc ( rm)  sinc  (2 Wx) 
r 

1 - r  1 (7b) 

Proof  of (6) follows  immediately  from (4) for  one  lost  sample 
at  the  origin.  Equations  (7a)  and  (7b)  then  follow  from  (2) 
and ( 3 ) ,  respectively. 

Proof via Gerchberg's  Algorithm:  Gerchberg's  iterative 
algorithm [ 21 is pictured  in  Fig. 1 .  A band-limited  function 
f (x)  is  oversampled  at  a  rate  28. M samples,  illustrated  by 
hollow  dots,  are  lost.  From  the  remaining  data,  we  form  the 
function 

Equation  (2)  can  be  considered  a  special  case  for r = 1. 

LOST SAMPLE RESTORATION 
Let ?ii denote  a  finite  set of M integers  corresponding  to  vari- 

ous values  of m. Given  the  set of samples  {f(m/2B)lm $?ti}, 
(he problem  at  hand is to  determine  {f(m/2B)lm E N}. Let 
f denote  the  M-dimensional  vector of the  lost  samples  arranged 
in  increasing  order of index. 

Theorem: If r < 1,  then 

s= [ I -  (4) 

where S is an M X M Toeplitz  matrix  with  elements 

{r sinc r ( m  - n)l(m, n) ETIIXR}. 
2 

I denotes  the  identity  matrix  and ho is  a  vector  of  linear  com- 
hinations of the  known  samples.  For m E x, the  elements of 
h o  are  ho(m/2B),where 

Note  that  this is  equivalent to  setting  the  unknown  sample 
values to  zero as is shown  in  the  sketch of g(x)  in  Fig.  1. 

The  first  step  in  the  algorithm is Fourier  transformation. 
Let  the  result of the  Nth  i teration be the  band-limited  signal 
&(x)  with  initialization fo (x) = g(x).  Since 
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the  corresponding  transform  is given by  the  Fourier  series 

(9) 

where  rect ( t )  is unity  for < $ and  is  zero  elsewhere.  This 
is shown  as  step  1  in  Fig.  1. 

We know  from (1)  that  the  spectrum  of f ( x )  is identically 
zero  for 1 u I > W .  This  is  enforced in step 2 where  we  form 
the  function 

Step 3 is inverse  Fourier  transformation to the  function 
h&): 

h N ( x )  = 1: HN(u)  exp (j27iuX) du. (1 1) 

This  estimate  of f ( x )  is sampled  at  a  rate  of 2B. The  values  of 
f(rn/2B),  however,  are  known  exactly  for  all m 4 %. These  re- 
place  the  samples  of h ~ ( m / z B )  for m @fA and  we  obtain  the 
sample  values: 

This  is  step  4.  Step  1  is  then  performed  and,  in  the  limit 

and  our  lost  samples  are  regained.  Convergence of Gerchberg's 
algorithm  in  a  similar  context  has  been  proven  in  three  distinct 
ways [ 13 -[4].  The  problem  we  are  addressing is one of in- 
terpolation.  Such  problems  are  well-posed  [4]-[  51. 

Let's  review the  description of the  previous  section  with  the 
goal  of  placing  one  iteration  of  the  algorithm  in  a  single  con- 
cise  expression.  Since  only  values  of m € m are  of  interest,  we 
have  from  (1 2 )  

W 

. S, exp [ i n u ( m  - n>/B]  du 

where,  in  the  second  step,  we  have  substituted (9) into ( IO)  
into (1 1)  into  (1 2 )  with x = m/2B.  Evaluating gives 

Dividing the  sum  into n €!I and n @, we  obtain 

fN+l (e) = h o  (E) nE 91 f N  (&) 
. sinc r (m - n ) ;  m E 'M. (13) 

The  samples of h o ( x )  contain  the  totality  of  the  contribution 
of  the  known  sample  points. 

Let 7~ denote  the  M-dimensional  vector  consisting  of  the 
Nth  estimate  of  the  M  lost  sample  values.  Then (13) can  be 
written  in  matrix  form  as 

.&+I = i 0  + SSN. (14) 

This is a  concise  iterative  form  for  restoring  lost  sample  values 
with  a  zero  vector  initialization. 

We now  consider  evaluation  of  (14)  in  the  limit,  Define  the 
unilateral z transform  of  the  vector  sequence { fNllv = 0 ,  I ,  
2, * * *} by 

7N -@(z) = 2 z-NjN. 
w 

N= 0 

Transforming  (14)  and  solving for @ ( z )  gives 

2 ( z )  = 
[ I 2  - s I -lio 

1 - z-1 
From  the  final  value  theorem  for Z transforms,  it  follows  that 

and  the  proof is complete. For r = 1,  note  that   the I -  S 
matrix  is  singular. An alternate  proof,  based on an observa- 
t ion  due  to  Howard [ 6 I ,  [ 71 is  offered  in  the  Appendix. 

AN ALTERNATE  RESTORATION FORMULA 
An alternate  method  to  restore  lost  samples  follows. 
Theorem: If r < 1,  then 
j L E - 1 6  

where E has  elements 

and  the  points {u,lp = 1, 2, * * * , p E %}are  nonequal  but  other- 
wise arbjtrary  values  chosen  from  the  interval W < u < B. The 
vector G contains  elements G ( u p )  where,  from (8) 

Corollary: If r < 1,  

This  follows  from  (1  6)  for  a  single  sample  with uo = ( B  + W)/2. 
From ( 2 )  and ( 3 )  it  then  follows  that,  for f ( x )  real, 

- cos {nm(r  + 1)/2} sinc (2Bx)]  

- cos {nm ( r  + 1 )/2} sinc (2Wx)I. 

Note  that  (7a)  and  (7b)  converge  faster  due  to  the l / m  factor 
in  the  sinc  not  present  in  the  corresponding  cos  term  above. 

Proof: The  function F ( u )  is zero  for I u I > W and G ( u )  is 
zero  for luI > B. Note  that  over  the  intervals W < / u /  < B we 
have F ( u )  = 0.  Fourier  transforming ( 2 )  and  separating  the 
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sum  gives 

We thus  have  for W < 1.1 < B 

(19) 

where  we  have  substituted  (1  7)  for  the Z m q m  term  in  (1  8). 
Viewing  {exp  (-jnrnu/B)  m €)A} as  a  basis  set  for G(u) on  this 
interval, it is  clear  that t h e  coefficients  can  be  uniquely  deter- 
mined.  This  observation  was  made  in  a  similar  context  by 
Howard [ 6 ] ,   [ 7 ] .  

One  method  of  solving  for  the  lost  samples is to  sample  (1  9) 
at M poinis  witkin  the  interval W < u < B  and  form  the  matrix 
equation G = Ef. Equation  (1 6 )  follows  immediately  assuming 
E is not singular. 

APPENDIX 

Here  a  second  proof of (4)  based  on  Howard’s  observation is 
offered. We begin by inverse  transforming  (19)  over  the  in- 
tervals W < I u I < B.  Define 

k ( x )  [l,” +,,”I G(u)  exp  ( j2nux)  du ( A I )  

and 

+(x) E -L [ 1,” + jr,B] ej2nux du 
2B 

= (1 - r)  sinc [ ( B  - W ) x ]  cos  [n(B + W > ’ x ] .  

Substituting  (1 7) into  (A1 ) gives 

where k’ denotes  the M vector of samples  computed  from 
(A2): 

and we have  recognized  that,  since p Em and  m e%, the 
Kronecker  delta  here  is  always  zero.  Comparing  with  (5), 

Solving  for 7 in  (A4)  thus gives (4)  and  the  second  proof is 
complete. 
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(A21 
Comparison of the  Characteristics of Linear  Least  Squares 

This  expression  is  in  terms of the  known samples.  An  equiva- 
lent  expression  in  terms of the  lost  samples  follows  from  ap- 
plication  of  (19)  to  (Al): 

As before,  we  equate  (A2)  and  (A3)  and  compute  the  lost 
samples. 

One  method is to  sample k ( x )  at x = p/2B; p €)A. One  can 
easily  show  that 

where 6, denotes  the  Kronecker  delta.  Thus,  from  (A3), 

or, in  matrix  form 

i =  - [ I -  SI 7 

and Orthonormal  Expansion in  Estimation 

J. E.  MCFEE AND Y.  DAS 

Abstract-It is frequently assumed  in  signal  processing applications 
that expansion of a  sequence by a  weighted  sum of mutually ortho- 
normal  sequences  yields  weighting  coefficients that are identical to the 
estimates of the parameters  which  maximize the likelihood function if 
the linear  sum  of  sequences  is  chosen as a  model.  Although  this  may  be 
a  valid approximation when  signal-to-noise ratios  are large, it is not gen- 
erally the case and may  lead to  erroneous results when  substantial  noise 
exists. This paper explores  the relationship  between orthonormal ex- 
pansion and linear  least  squares estimation.  In doing so, the conditions 
under  which orthonormal expansion  coefficients  are  maximum  likeli- 
hood estimates  are identified.  Several  interesting properties related to 
both techniques are  also  revealed. The results  are  relevant to a  wide 
range  of  signal  processing applications such as the discrete Fourier 
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